
LLNL-PROC-680910

The Improved Simple Corner Balance
Method and Efforts to Enhance its
Computational Performance

P. G. Maginot, P. N. Brown, A. J. Kunen, T. S.
Bailey

January 19, 2016

2016 ANS Annual Meeting
New Orleans, LA, United States
June 12, 2016 through June 16, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

The Improved Simple Corner Balance Method and Efforts to Enhance its Computational Performance

Peter G. Maginot, Peter N. Brown, Adam J. Kunen, Teresa S. Bailey

Lawrence Livermore National Laboratory, Livermore, CA 94551
maginot1@llnl.gov, brown42@llnl.gov, kunen1@llnl.gov, bailey42@llnl.gov

INTRODUCTION

The diamond difference (DD) spatial discretization has
long been a work horse of the neutron transport community.
For nearly as long as DD has been used in neutron transport, it
has been observed that DD produces undamped, non-physical
angular fluxes in spatially under resolved problems [1] and
can fail in the thick diffusion limit [2]. A long list of alterna-
tive spatial discretizations, all with better physics properties:
accuracy, robustness, and/or preservation of the thick diffusion
limit, have been proposed as alternatives to DD.

Unfortunately, these alternative spatial discretizations also
require significantly more floating point operations (FLOPs)
per unknown compared to DD. Historically, neutron transport
problems of interest have been able to be resolved sufficiently
that DD is accurate enough and FLOPs have been the compu-
tational performance bottleneck controlling time to solution.
Thus, in practice DD has been and remains a preferred spatial
discretization for neutron transport simulations.

Trends in computing architecture are leading to a new
paradigm where data movement, not FLOPs will control time
to solution [3]. This presents an opportunity to improve neu-
tron transport physics by reconsidering more FLOP intensive
spatial discretization than DD without incurring a time to so-
lution penalty. In this work, we consider the improved simple
corner balance (ISCB) spatial discretization, a unique alter-
native to DD that has the same memory footprint as DD, and
detail efforts to improve its computational performance.

IMPROVED SIMPLE CORNER BALANCE METHOD

The ISCB scheme is a member of the family of corner
balance spatial discretizations [4]. Like all corner balance
schemes, ISCB is defined by maintaining particle balance on
individual corners that are the constituents of a larger spatial
zone. However, unlike the simple corner balance or upstream
corner balance methods [4] ISCB does not individual corners
of the larger spatial zone are composed of the same material
or have the same dimensions; ISCB treats each corner as
having a unique macroscopic cross section and dimensions
[5]. As implemented in ARDRA [6], there is one unknown
corner average flux per material zone. This makes the ISCB
of ARDRA unique as a corner balance scheme; the ISCB
of ARDRA has an identical memory footprint as DD when
applied to the same spatial mesh. In contrast, other corner
balance schemes [4] require multiple unknowns per material
zone, resulting in a much larger memory footprint than DD
when applied to the same spatial mesh.

The ISCB scheme on 3-D Cartesian bricks is defined
by integrating the mono-energetic, steady state, fixed source
transport equation over the 8 individual material zones, corners
in the notation of [4, 5], that define a single “super” zone for

a given discrete-ordinate direction and energy group. The 8
corner balance equations are exact, but have more unknowns
than equations. To close the system of equations, an upwinding
condition is used on the super zone boundaries,

ψ f ,c =

 ψc ~Ω · ~n f > 0
ψb ~Ω · ~n f < 0

, (1)

where for corner c, the corner average unknown angular flux
is ψc, ~n f is the outward directed normal of face f (relative to
corner c), ψ f ,c is the average angular flux on face f , and ψb is a
boundary condition or previously determined outflow angular
flux from an adjacent super zone solution. On faces interior to
a super zone, ψ f ,c is defined as

ψ f ,c =
ψc + ψc′

2
, (2)

where ψc′ is the corner average flux of the corner adjacent to c
across face f . The definition of Eq. (2) requires the solution
of 8 linear equations to yield the 8 unknown corner average
fluxes of a given ISCB super zone. The resulting matrix is not
dense, but is also not lower triangular.

DATA LAYOUT AND DATA LOCALITY

As shown with KRIPKE in [7], the choice of data layout,
how the six dimensional angular flux phase space is mapped
to a computer’s linear memory space, greatly affects radiation
transport simulation performance. In KRIPKE, unknowns are
stored in a three level, nested fashion; a user chooses whether
energy groups (G), directions (D), or spatial zones (Z) are at
any particular level of the nesting. KRIPKE supports all six
possible memory data layouts. Additionally, computational
tasks like the sweep, scattering operator, etc. , in KRIPKE are
completed by looping over all subdomains. A subdomain is
one piece of the transport phase space that includes a contigu-
ous subset of spatial zones, at least one energy group, and at
least one direction.

The ISCB scheme was initially implemented in ARDRA
[6] and as a result, inherited a GDZ data layout customized for
DD and subdomains with a single energy group and direction.
However, using a data grouping customized for DD, the 8
unknowns of a single 3-D super zone ISCB solve reside in 4
non-contiguous portions of memory. With larger subdomains
and different data layouts, 8 different, non-contiguous memory
locations would be accessed for each ISCB super zone solve.
To demonstrate this, we apply ISCB to a 2-D problem, for a
subdomain with two angles, two energy groups, and 8 spatial
zones, requiring a total of 8 super zone solves to find all
angular flux unknowns. Laying the data out in the ZDG pattern,
ISCB using a diamond difference memory (DDM) grouping
accesses data as shown in Fig. 1, where dashed boxes represent

Groups

A

Directions

B

x

y

Zones

Layout: ZDG

A B A B A B A B

A B A B

A B

A

B

B

AA B A B

A B A B A B A B A B

Fig. 1. DDM grouping for large subdomain ZDG data layout.

data access locations. Alternatively, we could group the data
to be continuous for a given super zone rather than contiguous
for each zone, yielding a contiguous memory (CM) access
pattern as shown in Fig. 2.

Zones

x

y

Groups

A

Directions

B

Layout: ZDG

A A A A

B BBBBBBB

A A A A BBBB BBBB

A A AAA A A A

Fig. 2. CM grouping for large subdomain ZDG data layout.

ISCB MATRIX INVERSION

Numbering the corners of a given ISCB super zone solve,
as shown in Fig. 3, yields a matrix, L1, with a non-zero pattern,
as shown in Eq. (3), where X represents a non-zero number.
There are two straightforward software options for solving

1

3

5
7

2

4

x

y

z
6

8

Fig. 3. Numbering of ISCB super zone corners.

the ISCB linear system of equations described by Eq. (3) via
Gaussian elimination. The first and simplest to implement, is
to use a third party library to solve the system of equations.

We use the Intel MKL implementation of the LAPACK [8]
dgesv() partial pivoting Gaussian elimination solve. The sec-
ond option, a hand coded Gaussian elimination solve, requires
a greater amount of developer work, but,

1. accounts for the sparsity pattern of the ISCB matrix,

2. does not perform any partial pivoting, and

3. does not perform any error/argument checking,

possibly leading to increased computational performance.

L1 =

X X · X X · · ·

X X X · · X · ·

· X X X · · X ·

X · X X · · · X
X · · · X X · X
· X · · X X X ·

· · X · · X X X
· · · X X · X X

(3)

Additional options for solving the ISCB system of equa-
tions are possible if we re-order the ISCB matrix to minimize
fill-in. Using the symmetric minimum degree re-ordering de-
scribed in Table I, yields an ISCB matrix, L2, with non-zero
structure as shown in Eq. (4).

TABLE I. Corner re-numbering to reduce matrix fill-in.
Re-ordering 1 2 3 4 5 6 7 8

Original ordering 8 1 3 6 2 4 5 7

L2 =

X · · · · X X X
· X · · X X X ·

· · X · X X · X
· · · X X · X X
· X X X X · · ·

X X X · · X · ·

X X · X · · X ·

X · X X · · · X

. (4)

Again, we may apply Gaussian elimination to invert L2 for a
given super zone solve. Alternatively, we could use a Schur
complement solve. To use the Schur complement solve, we
write the ISCB super zone solve described by L2 as a block
system of equations:[

A B
C D

] [
~x
~y

]
=

[
~a
~b

]
. (5)

Equation (5) can be expanded as

A~x + B~y = ~a (6a)

C~x + D~y = ~b . (6b)

Solving Eq. (6b) for ~y,

~y = D−1
(
~b − C~x

)
, (7)

and inserting into Eq. (6a) yields:

A~x + BD−1
(
~b − C~x

)
= ~a . (8)

Manipulating Eq. (8), we have:(
A − BD−1C

)
~x = ~a − BD−1~b . (9)

The linear algebra required to find ~x via Eq. (9) can be ac-
complished using single instances of the LAPACK dgemv()
[dense matrix-vector multiplication], dgemm() [dense matrix-
matrix multiplication], and dgesv() [dense Gaussian elimina-
tion with partial pivoting] operations. Because D is diagonal,
it is trivial to calculate and multiply by D−1. Likewise, since
A is diagonal, it is also trivial to add A to the matrix −BD−1C.
Having obtained ~x, we solve for ~y using Eq. (7) and a single
LAPACK dgemv() operation.

COMPUTATIONAL RESULTS

To compare the performance of our various ISCB imple-
mentations, we conduct a weak, on node scaling study using
Lawrence Livermore’s RZMerl using KRIPKE [7]. A single
node on RZMerl consists of two Intel Xeon E5-2670 proces-
sors with a total of 16 cores. Our scaling problems uses S 8
quadrature (96 total angles), 32 energy groups, and we scale
the number of spatial zones per core, using 16 x 16 x 16 zones
per core, requiring a total of 96 × 32 × 8 × 8 × 8 ISCB super
zone solves per core. We consider two subdomain sizes, small-
with 1 group and 1 direction per subdomain and large- with
32 groups and 12 directions per subdomain.

TABLE II. Notation for different ISCB solution techniques.
Method Matrix Ordering Solution Method

DDM Original GE w/ dgesv()
CM Original GE w/dgesv()
HGE Original GE by hand

ROGE Re-ordered GE by hand
SC1 Re-ordered SC by hand
SC2 Re-ordered SC w/ dgemv()
SC3 Re-ordered SC w/ dgemv(),

dgemm()
SC4 Re-ordered SC w/ dgemv(),

dgemm() , dgesv()

In the results that follow, we consider several variants of
the ISCB solution, and refer to each by the notation of Table II.
In Table II, the DDM scheme uses the diamond difference
memory grouping, all other methods use the contiguous mem-
ory ISCB memory grouping; methods either use Gaussian
elimination (GE) or the Schur complement (SC) inversion.
Additionally, “by hand” means that all linear algebra opera-
tions have been hard coded and loops have been unrolled by
the developer.

Initial Comparisons

If data locality is the performance bottleneck of the ISCB
scheme in ARDRA, we expect to see a significant performance
increase (runtime decrease) when using the CM scheme vs.
the DDM scheme, with the biggest runtime difference occur-
ring for large subdomain sizes with the ZGD or ZDG data
layout. In Fig. 4, we give the sweep times of the DDM and

CM schemes for a ZDG data layout with large subdomains.

1 2 4 8 16
NMPI Tasks

10

15

20

25

30

S
w

e
e
p
_K

e
rn

e
l
T
im

e
 [

se
c]

CM Avg: 24.69 Min: 22.6 Max: 27.7

DDM Avg: 24.99 Min: 22.4 Max: 28.0

CM

DDM

Fig. 4. CM and DDM timing with ZDG and large subdomains.

The Intel XeonE5-2670 has 32 KB of L1 cache and 256 KB
of L2 cache per core, whereas the distance between farthest el-
ements of a single super zone solve is 1092 KB for our chosen
problem. Despite significantly more L1 and L2 cache misses
than the CM scheme, the DDM scheme achieves effectively
the same sweep runtimes, implying a performance bottleneck
other than data locality, likely the 8 × 8 matrix inversion.

Variations of the Schur Complement Solve

In Fig. 5 we compare the performance of the Schur com-
plement solve using various mixtures of LAPACK library calls
and hand coded linear algebra operations. Though simplest
from a coding perspective to use LAPACK function calls, the
best performance is achieved when all linear algebra opera-
tions are written explicitly by hand.

1 2 4 8 16
NMPI Tasks

0

1

2

3

4

5

6

7

8

S
lo

w
d
o
w

n

SC2 Slowdown Avg: 1.6 Min: 1.6 Max: 1.6

SC3 Slowdown Avg: 2.2 Min: 2.0 Max: 2.3

SC4 Slowdown Avg: 6.5 Min: 6.4 Max: 6.6

SC4/SC1

SC3/SC1

SC2/SC1

Fig. 5. Comparing LAPACK library functions vs. hand coding
for the Schur complement solve. Results are for the GDZ data
layout with small subdomains, but are representative of all
data layouts and subdomain sizes.

Comparison of Optimized Solves

We now compare the performance of the fastest variations
of the different ISCB solution techniques and data layouts.
The results of Fig. 6 are for the GDZ data layout with small
subdomains, but the results are reflective of all data layouts
and subdomain sizes. For all data layouts and subdomain sizes,

1 2 4 8 16
NMPI Tasks

0

1

2

3

4

5

6

7

S
lo

w
d
o
w

n

CM Avg: 6.099
HGE Avg: 1.102
ROGE Avg: 1.060

CM

HGE

ROGE

Fig. 6. Slowdown of different methods compared to SC1.

the SC1 method is the fastest, but the hand coded Gaussian
elimination solves are only about 5-10% slower than SC1.

Comparison to DD

Finally, we compare the performance of SC1 to DD on
the same mesh. As seen in Fig. 7, the time to solution of the
SC1 scheme can be within a factor of two of DD for small sub-
domains or any data layout where zones are the innermost data
nesting. However, Fig. 7 also illustrates one of the biggest per-

1 2 4 8 16
NMPI Tasks

0

2

4

6

8

10

S
C

1
 S

lo
w

d
o
w

n
 v

s.
 D

D

Big ZDG

Big GZD

Big DGZ

Small ZDG

Small GZD

Small DGZ

Fig. 7. SC1 slowdown vs to DD for equal unknown counts.

formance advantages of DD on modern architectures, compiler
can readily SIMD-ize the DD spatial discretization, allowing
for full utilization of the CPU to process multiple data ele-
ments at once. The ISCB solve cannot be SIMD-ized due to
the required matrix inversion. SIMD-ization would require
storing multiple matrices (one for each group and direction)
and and re-writing the matrix inversion to allow for multiple
simultaneous matrix solves of similar, but distinct data.

CONCLUSIONS

The ISCB spatial discretization is a more FLOP intensive
spatial discretization than DD with the same memory footprint
as DD. Though designed to maximize FLOP intensity, third
party libraries such as LAPACK are not tuned for the unique,
frequent, small linear algebra needs of neutron transport prob-
lems. While hand coding a sparse Gauss elimination is likely

to be faster than a dense matrix solve (CM vs. HGE), were
LAPACK suitable for small linear algebra problems, we would
not have seen a performance increase with decreased numbers
of LAPACK calls for the Schur complement solve (SC4 vs.
SC1). Significant effort has reduced the relative compute time
of ISCB to DD, but on current computer architectures DD
is still faster than ISCB. Future work comparing the overall
efficiency of ISCB to DD may reveal that while ISCB is slower
than DD on current computers, ISCB is more accurate than
DD by a factor greater than the compute time slowdown. As
new computer architectures become available, we will test our
hypothesis that neutron transport simulations will be band-
width limited, ideally rendering the additional FLOPs required
by ISCB to be “free” [in terms of time to solution].

ACKNOWLEDGMENTS

The authors are indebted to Britton Chang for his dis-
cussions regarding the reordering of the ISCB matrix and
the Schur complement matrix solve. This work was per-
formed under the auspices of the U.S. Department of Energy
by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.

REFERENCES

1. E. E. LEWIS and W. F. MILLER, Computational Methods
of Neutron Transport, ANS, La Grange Park, IL (1993).

2. E. W. LARSEN and J. E. MOREL, “Asymptotic Solutions
of Numerical Transport Problems in Optically Thick, Dif-
fusive Regimes II,” JCP, 83, 212–236 (1989).

3. S. H. LANGER, I. KARLIN, ET AL., “Performance Anal-
ysis and Optimization for BLAST, a Higher Order Finite
Element Hydro Code,” Tech. Rep. LLNL-PROC-666382,
Lawrence Livermore National Lab (2015).

4. M. L. ADAMS, “Subcell Balance Methods for Radiative
Transfer on Arbitrary Grids,” Transport Theory and Statis-
tical Physics, 26, 4-5, 385–431 (1997).

5. B. L. BIHARI and P. N. BROWN, “A Linear Algebraic
Analysis of Diffusion Synthetic Acceleration for the Boltz-
mann Transport Equations II: The Simple Corner Balance
Method,” SIAM J. Num. Analysis, 47, 3, 1782–1826 (2009).

6. U. HANEBUTTE and P. N. BROWN, “ARDRA, Scalable
Parallel Code System to Perform Neutron and Radiation
Transport Calculations,” UCRL-TB-132078, Lawrence Liv-
ermore National Lab (1999).

7. A. J. KUNEN, T. S. BAILEY, and P. N. BROWN,
“KRIPKE- A Massively Parallel Transport Mini-App,” in
“Joint International Conference on Mathematics and Com-
putations, Supercomputing in Nuclear Applications, and
the Monte Carlo Method,” ANS, LaGrange Park, IL (2015).

8. E. ANDERSON ET AL., LAPACK Users’ Guide, SIAM,
Philadelphia, PA, third ed. (1999).

